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Using the concept of an approximation space we describe certain analogies
between spaces of sequences, functions and operators. In order to illustrate the
power of this method, some old and new theorems about distributions of Fourier
coefficients and eigenvalues are established.

The aim of this paper is to describe some analogies between well-known
spaces of sequences, functions and operators which have for the first time
been observed by J. Peetre. For this purpose we develop a theory of so-called
approximation spaces. Similar concepts were already investigated by P. L.
Butzer and K. Scherer, J. A. Brudnij and N. J. Krugljak, as well as by J.
Peetre and G. Sparr within the framework of their interpolation theory of
abelian groups. For the convenience of the reader and in order to be se1f
contained, we present some of their basic theorems with new and very simple
proofs, and apply them to the main examples.

From our point of view, the most interesting results are to be found in the
last chapter, where we treat some significant applications. First, we
investigate the influence of smoothness properties of periodic functions on
the behaviour of their Fourier coefficients. This is a special case of a more
general problem. If we remember that the complex Fourier coefficients
coincide with the eigenvalues of the corresponding convolution operators, it
suggests itself to ask, how do the distributions of eigenvalues of integral
operators depend on certain properties of the generating kernels? Results can
be obtained via a generalization of Weyl's theorem which we prove by the
method of related operators. The original proof (unpublished) of this
remarkable theorem is due to B. Carl and H. Konig.
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1. DEFINITIONS AND ELEMENTARY PROPERTIES

In this chapter we introduce the concept of an approximation space and
formulate some elementary properties.

1.1. Quasi-Banach Spaces

A quasi-norm is a non-negative function II ·llx defined on a (real or
complex) linear space X for which the following conditions are satisfied:

(I) If Ilfllx = 0 for somefE X, thenf= o.

(2) IIAfllx = IAIllflix for fE X and all scalars A.

(3) There exists a constant Cx ~ I such that

Ilf+gllx ~ cx[llfllx + II gllxl for f, g E X.

The quasi-norms 11·llil ) and II'II~) are said to be equivalent if

and for all fE X,

where CI and C2 are suitable constants.
Every quasi-norm generates a metrisable Hausdorff topology on the

underlying linear space. For two equivalent quasi-norms the corresponding
topologies coincide.

A quasi-Banach space is a linear space X equipped with a quasi-norm
11·llx such that every Cauchy sequence is convergent.

A quasi-norm 11·llx is called a p-norm (0 <p ~ I) if

Ilf+glli ~ Ilflli + II glli for f, g E X.

Then condition (3) is satisfied with cx := 21
/ P -

I
• Conversely, for every quasi

norm 11·llx there exists an equivalent p-norm II'II~, if we determine p by
lip := I + log2 cx' Clearly, every p-norm is also a q-norm for 0 < q <p ~ 1.

Let X and Y be quasi-Banach spaces. Then ~(X, Y) denotes the linear
space of all (bounded linear) operators T acting from X into Y. Putting

II Tlly:= sup{11 Tflly: Ilfllx ~ I}

we get a quasi-norm on ~(X, Y).

1.2. Approximation Schemes

An approximation scheme (X, An) is a quasi-Banach space X together
with a sequence of subsets A n such that the following conditions are
satisfied:
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(1) A 1 SA 2 S···Sx.

(2) M" S A" for all scalars A and n = 1,2'00' .

(3) Am+A"SAm+" for m,n= 1,2,....

We put A o := {of. Obviously, A:= U::"=IA" is a linear subset.

1.3. Approximation Numbers

Let (X, A,,) be an approximation scheme. For fE X and n = 1,2'00' the nth
approximation number is defined by

Now some elementary properties are listed:

(1) Ilfllx = al(f, X) ~ az(f, X) ~ ... ~ 0 for fE X.

(2) a,,(Af, X) = 1,1, I a,,(f, X) for fE X, all scalars A, and n = 1,2'00' .

(3) am+,,-I(f+g,X):::;;; cx[am(f,X) +a,,(g,X)] for f,gEX and
m, n = 1,2,00..

It is worthwhile mentioning that a,,(f, X) is in general not a continuous
function of f This unpleasant situation can be avoided if we use an
equivalent p-norm on X.

1.4. Approximation Spaces

Let 0 <p < 00 and 0 < u:::;;; 00. Then the approximation space X~, or more
precisely (X, A ,,)~, consists of all elements fE X such that
(nP-1/Ua,,(f, X)) E lu' where n = 1,2'00' . We put

for fEX~.

The proof of the following result is straightforward.

PROPOSITION 1. X~ is a quasi-Banach space.

Remark. If X is a Banach space and we have A" +A" = A" for n =
1,2,... , then X~ with 1:::;;; u :::;;; 00 is a Banach space, as well. This case was
treated in detail by Butzer and Scherer [6].

Now we formulate a very useful criterion.

PROPOSITION 2. An element fE X belongs to X~ if and only if
(2 kPa Zk(f, X)) E lu' where k = 0, 1'00' . Moreover,

defines an equivalent quasi-norm on X~.
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Next we state that the scale of approximation spaces is lexicographically
ordered.

PROPOSITION 3. There holds

X~::2~; for 0 <PI <P2 < 00 and 0 < u l ' U2 ~ 00.

and

for 0 <P < 00 and 0 < UI < U2~ 00.

Finally, we mention a deep result of Peetre and Sparr [14], stating that the
approximation spaces form a real interpolation scale. See also [6,
Korollar 2.3.1 ].

PROPOSITION 4. Let 0 < B< 1 and P= (I - B) Po + BpI' where Po =1= PI'
Then

2. EXAMPLES

In this chapter we introduce some important examples of approximation
spaces.

2. 1. Sequence Spaces

As is usual, lp with 0 <p ~ 00 stands for the quasi-Banach space of all p
summable scalar sequences x = (~m)' Let fn denote the set of all scalar
sequences a = (am) possessing at most n coordinates am =1= O. We also
consider the subset On which consists of all scalar sequences such that am = 0
if m > n.

It follows easily that (fp,fn) and (fp, on) are approximation schemes. We
put

and

Later on we shall show that s~.u coincides with the well-known Lorentz
sequence space lr.u' where llr = P + lip. The sequence spaces b~.u can be
considered as the discrete counterpart of the Besov function spaces which
will be defined in the next section; cf. also [19 J.
2.2. Function Spaces

As is usual, L p with 0 <p ~ 00 stands for the quasi-Banach space of all p
integrable scalar functions f defined on the unit interval.
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Let Fn denote the set of all trigonometrical polynomials

00

a(s)=a l + L: [azmsin2nms+azm+lcos2nms]
m=1
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possessing at most n coefficients am of- O. We also consider the subset On
which consists of all trigonometrical polynomials such that am = 0 if m > n.
It easily turns out that (L p , Fn) and (L p , On) are approximation schemes. We
put

and

A detailed theory of S~.u spaces has not been developed until now. However,
there is an important result of Steckin [20] which states that Sn consists
precisely of those periodic functions having an absolutely convergent Fourier
series. On the other hand, it can be seen from approximation theory that B~.u

are the famous Besov function spaces; cf. [2, 3, 6, 13, 21].

Note. In order to simplify our notation we will not indicate by an
additional symbol that all spaces under consideration consist of periodic
functions.

The above definitions extend to the case of X-valued functions, where X is
a quasi-Banach space. Then we denote by [L p , X] the quasi-Banach space of
all measurable and absolutely p-integrable X-valued functions f defined on
the unit interval; cf. [22]. If the sets [Fn' X] and [On' X] are introduced
canonically, we obtain the approximation spaces

and

2.3. Operator Spaces

Let f!(E, F) denote the Banach space of all (bounded linear) operators
acting from the Banach space E into the Banach space F. An operator
S E f!(E, F) is called absolutely p-summing (0 <p < C()) if there exists a
constant a ~ 0 such that

for all finite systems of elements XI'"'' xn E E. We put

"SII9' =: inf a.. p
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The quasi-Banach space of all absolutely p-summing operators from E into F
will be denoted by ~p(E, F).

It is convenient to define ~ oo(E, F) := S!(E, F), and II S II", := II S II:;, Let
lY n(E, F) be the set of all operators A E S!(E, F) having an i":'nage M(A) :=
{Ax: x E E} which is at most n-dimensional. It easily turns out that
(~p(E, F), lY n(E, F)) is an approximation scheme. We put

In the special case p = CX) we also use the notation S!~(E, F).

3. THEOREMS

In the sequel we prove some fundamental theorems.

3.1. Representation Theorem

First of all we establish the famous Representation Theorem which, in the
case of function spaces, goes back to Besov [3] and Amanov [1]. The
analogous result for operator spaces is due to Pietsch [16, 171. We also
mention that a very general theorem of this type was recently proved by
Brudnij and Krugljak [4,5]. See also the Equivalence Theorem in [6].

REPRESENTATION THEOREM. Let (X, An) be an approximation scheme.
ThenfE X belongs to X~ ifand only if there exist ak E A 2k such that

Moreover,

00

f= L ak
k=O

and

Ilfll~.!' := inf 11(2kp
II ak Ilx)11/ 'u u

where the infimum is taken over all possible representations, defines an
equivalent quasi-norm on X~.

Necessity. LetfE X~. Then we choose at E A 2L 1 such that

Put ao := 0, a\ := 0, and ak +2 := at+ \ - at for k = 0, 1,.... Obviously we
have ak E A 2b and

00

f= lim at = L ak •
k k=O
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Moreover, it follows from

Ilak+zllx";;; cx[llf- at+llix + Ilf- atllxJ";;; 4CXaZk(f, X)

that (2 kp Ilakllx)E lu' and we obtain the estimate

Ilfll~e,,",,;;; 2
zp +zcx IIflli~p·

u u
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Sufficiency. Without loss of generality we may suppose that 11·llx is a p
norm with a <p < u. If fE X can be written in the form f = L~=o ak such
that akE A Zk and (2

kp II akllx)E lu' then it follows from LZ:~ akE A ZL I that

aZh(f, X)P";;; /k- ~~ akI[ ,,;;; ~h Ilaklli·

In the case a <u < 00 we put q := u/p, and choose a such that pp >a > a.
Then

OC! OC!

&: c '\~ 2h(pu-aq) Y 2kaq Iia Ilu
"':1..:..... "- kX

h=O k=h

OC! k

&: '\~ 2kaq Iia IIU \' 2h(pu-aq)
"': C1 ..:..... k x "-

k=O h= I

OC!

";;;Cz L [2kP lla k llx Ju < 00.
k=O

This yields

IIflli'?,,;;; C 11(2kp Ilakllx)lllu '

Therefore we have fE X~ and Ilflli~P";;; C Ilfll~,,". The case u = 00 can be
treated analogously. u u

As an immediate consequence of the Representation Theorem we get

PROPOSITION 5. /fa < u < 00, then the linear subset A is dense in X~.

Proof It easily turns out that every series!= L~=o ak with ak E A Zk and
(2

kp Ilakllx)E lu is eVt:lI convergent relative to the quasi-norm 11·llx.'
An approximation scheme (X, A n) is called linear if there exists a

uniformly bounded sequence of linear projections Pn mapping X onto An'



122

Then it follows that
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Ilf- Pn- Jllx ~ can(f, X)

for allfE X and n = 1,2,..., where c:= cxl 1 + sup IIPnll.>"].
Remark. In this case Butzer and Scherer l6] speak of an idempotent

approximation procedure.

With the help of the projections

we can formulate the

LINEAR REPRESENTATION THEOREM. Let (X,A n ) be a linear approx
imation scheme. Then fE X belongs to X~ if and only if

In this case we have
00

f= L QJ
k=O

Moreover,

is an equivalent quasi-norm on X~.

EXAMPLE 1. The approximation scheme (lp, on) is linear, since the
sequence of the canonical projections has the required property.

EXAMPLE 2. The approximation scheme (L p' On) with 1 <p < 00 is
linear, since the sequence of the Fourier projections has the required
property. The linearity fails in the limit cases p = 1 and p = 00. For
o<p < 1 there even does not exist any bounded linear projection from L p

onto On'

3.2. Reiteration Theorem

For every approximation scheme (X, A n) we have An c:;: X~. Therefore it
follows that (X~,A n) is an approximation scheme, as well. This means that
we can reiterate the construction of approximation spaces.

LEMMA 1. There exists a constant c > 0 such that

for all fE X~ and n = 1, 2,....
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Proof We choose aI' a2E An _ 1 satisfying the estimates

Then

a2n - I (f, X)";; Ilf- (a l + aJlx";; 2an(f - aI' X)";; 2n- P Ilf- alllxp
w

,,;; Co n- P Ilf - alllxp ";; 2con- P an(f, ~).
u

LEMMA 2. There exists a constant c > 0 such that

123

II a Ilxp";; cnP II a Ilx
u

for all a E Anand n = 1, 2,....

Proof We consider the case where 0 <u < 00. Then

Remark. Within the framework of [6, Definition und Lemma 2.3.1] the
results of Lemmas 1 and 2 are said to be a Jackson inequality and a
Bernstein inequality, respectively.

Now we are in a position to establish the basic theorem of this section.
Similar results are well known within the context of interpolation spaces, cf.
[2,3.5.3], and [21, 1.10.2]. See also [6, Korollar 2.3.2].

REITERATION THEOREM. Let (X, An) be an approximation scheme. Then
(XP)a = X p +a

u v v·

Proof If f E (X~)~, we have (2 kaa2k(j, X~)) E Iv' Lemma 1 yields
(2 k(p+al aZk(f, X)) E Iv. HencefE x~+a. This proves that (X~)~ S; x~+a. Now
letfEX~+a, and consider a representation f= I:r'=oak such that ak EA 2k

and (2 k
(p +a) II ak Ilx) E Iv' Then we obtain from Lemma 2 that (2 ka II ak Ilxp) E

Iv. Consequently fE (X~)~. So we have x~+aS; (X~)~. u

EXAMPLE 1. Since (an(x,/oo )) is the non-increasing rearrangement of
x E 100 , we get s~.u = Ir•u with l/r = p, where Ir•u is the well-known Lorentz
sequence space. Now the Reiteration Theorem yields

sP = (SliP )P = sl/p+p = I
p,u co.P u ro.u r,u with l/r = p + lip.
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3.3. Transformation Theorem

The next result is very simple. However, it often happens in mathematics
that trivial theorems can be extremely powerful.

TRANSFORMATION THEOREM. Let (X, A m) and (Y, B n) be approximation
schemes. Let T E f!(X, Y). If there are constants A >0 and c >0 such that

whenever

then T(XCP
) <:; Y::.

Proof We consider the case A~ 1 and put

N m := {n: c(m - 1).1 + 1 ~ n <cm.1 + 1 f

Then

for m = 1,2,....

and

for fEXandnENm •

Therefore, if 0 < u < 00, we obtain

This proves the assertion for A~ 1 and 0 <u < 00. The remaining cases can
be treated similarly.

Many applications of the Transformation Theorem will be given in the
next chapter.

3.4. Embedding Theorem

In the sequel we consider a couple of quasi-Banach spaces X and Y which
are continuously embedded into some linear topological Hausdorff space.
Furthermore, let (X, An) and (Y, An) be approximation schemes built from
the same sequence of subsets.

LEMMA 3. Let 0 < p < a < 00 and 0 < u ~ 00. Suppose that Y can be v~

normed with 0 < v ~ 1. Then the following conditions are equivalent:
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(1) There exists a constant Co >0 such that
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for all a E An and n = 1,2,....

(2) There exists a constant cp • u >0 such that

for all a E An and n = 1,2,....

(3) There exists a constant ca •v >0 such that

Ilall l , ~ ca v Ilallxu for all a E A.. /'

Proof The implication (2) =? (1) follows immediately from Lemma 2.
Because of X~ = (X~)~-P and Lemma 2 we have

II a Ilxu~ cn a
-

p II a Ilxu,. u

for all a E An and n = 1,2,.... Therefore (3) =? (2). By hypothesis we may
suppose that 11·11 y is a v-norm. Then, given a E A, there is a representation
a = Lf'~o ak such that ak E A 2k , and 11(2ka Ilakllx)111. ~ 21Iall~J'. Assuming (1)
we now obtain I t'

Iially~ 1~o Ilakll~! Ill' ~ 2coIlall~; ~ ca,v Ilallx~'

Hence (1) =? (3).

Now we are ready to establish the famous

EMBEDDING THEOREM. Let X and Y be quasi-Banach spaces which are
continuously embedded into some linear topological Hausdorff space.
Furthermore, let (X, A n) and (Y, A n) be approximation schemes built from
the same sequence of subsets. Suppose that there exist constants a >0 and
c > 0 such that

for all a E An and n = 1,2,....

Then x~+a ~ r:;. In particular, if Y can be v-normed with 0 < v ~ 1, we
have X~~ Y.

Proof Since the linear subset A is dense in ~, condition (3) of the
preceding lemma yields X~ ~ Y. Now it follows from the Reiteration
Theorem that X~+ a ~ (X~)~ c:; r:;.

EXAMPLE 1. Let 0 <q <p ~ 00. Because of Holder's inequality we have

for all a Efn and n = 1,2,....
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This yields the embeddings

ALBRECHT PIETSCH

if p + l/p = a + l/q.

From the formula lr.u = s~.u with l/r = p + l/p we see that even identity
holds.

Analogously we get

if p + l/p = a + l/q.

EXAMPLE 2. Let 1 <"p <q <" 00. Then Nikolskij's inequality [13, 3.4.3]
states that

II a IIL
q

<" cnl/
p

-l/q II a IILp
This yields the embeddings

for all a E On and n = 1,2,....

if p-l/p=a-l/q.

Nessel and Wilmes [12] observed that the above estimate remains true also
for a E Fn if 1 <"p <" 2. There are, however, counterexamples for 2 <p < 00

and q = 00. The case 2 <p < q < 00 seems to be open.

EXAMPLE 3. Let 1 <" q <" 2 <"p <" 00. Then the Carl-Lewis inequality
[7, 11] states that

IIA II9'q <" cnl/q-l/
p IIA II9'p

This yields the embeddings

for all A E ~n(E, F) and n = 1, 2,....

if p + l/p = a + l/q.

In particular, we get the inclusion 1!y2 ~ \ll2' which was first proved by
Konig [9].

Remark. Another result of this type is due to the author [15, 18.6.3]. Let
91(E, F) denote the Banach space of all nuclear operators T E 1!(E, F)
equipped with the norm II· ILl" Then

IIA ILr <" n IIA II~ for all A E ~n(E, F) and n = 1,2,... ,

and it follows that 1!:(E, F) ~ 91(E, F). Furthermore, it turns out that many
inclusions proved in the theory of operator ideals can be understood as
embeddings within the context of approximation spaces.

3.5. Composition Theorem

Now we prove a so-called



APPROXIMATION SPACES 127

COMPOSITION THEOREM. Let (X,A n), (Y,B n), and (Z, Cn) be approx
imation schemes. If M is a bounded bilinear map from X X Y into Z such
that M(A n, Y) c;: Cn and M(X, Bn) c;: Cn for n = 1, 2,..., then

whenever 11u + 11v = 1/w.

Proof The assertion follows immediately from

and Holder's inequality.

EXAMPLE 1. Let x E lp and y E lq. If M(x, y) is defined to be the coor
dinatewise product x· y = (em 17m) of the sequences x = (em) and y = (17m)'
then Holder's inequality yields M(x, y) E lr with Ilr = lip + Ilq. Conse
quently we have

and b~.u . b~.v c;: b~.:,a.

EXAMPLE 2. LetfE L p and g E L q such that lip + I/q ~ 1. If M(f, g) is
defined to be the convolution

.1

f*g(s)=J f(t)g(s-t)dt
o

of the functions f and g (periodically extended on the real line ), then it is well
known that M(f,g)EL r with 1/r= lip + Ilq-1; cf. [23, Chap. 11,1].
Consequently we have

and

EXAMPLE 3. Let TE 'l1 p (E, F) and S E \~\(F, G) such that lip +
1/q ~ 1. If M(S, T) is defined to be the product ST of the operators Sand T,
then it is well-known that STE'l1 r (E,G) with 1/r= lip + 1/q; cf. [15,
20.2.41. Consequently we get

'l1~.v(F, G) 0 'l1~.u(E, F) c;: 'l1~.;;,a(E, G).

3.6. Commutation Theorem

Let (X, An) be an approximation scheme, and consider the quasi-Banach
space [Lp,X~l. On the other hand, if [Lp,Anl consists of all An-valued
functions fE [Lp,Xl, we get an approximation scheme ([Lp,Xl, [Lp,A n]).
The corresponding approximation spaces will be denoted by [Lp,Xl~.
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COMMUTATION THEOREM. There holds

and

(2) [Lp , X:;] ;2 [L p , X]: if 0 < u ~p ~ 00 and u * 00.

Proof (1) We consider a measurable step-function f = L..~=I IhXh'
where II ,.. ·,fm EX:;, and XI'"'' Xm are characteristic functions of pairewise
disjoint measurable subsets .oI,...,.om. Choose ahnEA n_ 1 such that
II Ih - ahn Ilx ~ 2an(fh' X), and put

m

!!n:= I ahnXh'
h=1

Let 0 <p ~ U < 00. Since!!n E [Lp,A n_ I ], it follows that

Here Ilh denotes the Lebesgue measure of .oh' Therefore we get

So we have

for all X:-valued measurable step-functions f. Now the assertion follows from
the fact that these functions are dense in [Lp , X:].

(2) Let f E [L p, X]:. Then there exists a representation f = L..~=O!!k such
that !!kE[Lp,Azk] and (2kpll!!kllrLp.xj)Elu' It can be shown that f(s)=
L..~=o !!k(S) almost everywhere. So, if 0 < U ~p < 00, we obtain
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1
00 [ (I ) liP] U/!/U

<; ;;'0 2
kp f

o
II~h(s)llf ds \ < cx).

This implies that fE [L p , X~].

Remark. If u = cx), then we get into trouble with respect to the
measurability of f as an X~-valued function.

Remark. An analog of the above Commutation Theorem is well known
within the framework of interpolation spaces; cf. [2, 5.8.6] and [21, 1.18.4].

4. ApPLICATIONS

Now we apply the theory of approximation spaces in order to get results
about the distribution of Fourier coefficients and eigenvalues.

4.1. Fourier Coefficients

For every scalar function fE L 1 the sequence of Fourier coefficients is
defined by

.1

~l(f) := j f(s) ds,
o

I

~2m(f) := 2f f(s) sin 2nms ds,
o

and

1

~2m + 1(f) := 2 fa f(s) cos 2nms ds.

There are many classical results concerning the problem how the asymptotic
behaviour of (~m(f)) depends on certain properties of the functionf; cf. [18J.
All these facts are summarized in the following theorems.

THEOREM 1. Let l/r = p + 1/2. Then the assertions fE S~,u and
(~m(f))E lr.u are equivalent.
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Proof. According to the Fischer-Riesz theorem Tf:= (~m(f)) defines an
isomorphism between L 2 and 12 , Hence the Transformation Theorem tells us
that T is also an isomorphism between Si,u and si,u' But the latter space
coincides with lr,u'

If 1 <, P <, 00, then p' denotes the conjugate exponent defined by lip +
lip' = 1, and we put p+ := max(2, p').

THEOREM 2. Let llr = p + IIp+. Then fE S~,u implies (~m(f)) E lr,u'

Proof In the case 1<,p <,2 we see from the Hausdorff-Young theorem
that Tf:= (c;m(f)) defines an operator from L p into lp" Now the assertion
follows from the Transformation Theorem. If 2 <,p <, 00, then S~.u <:; Si.u
yields the conclusion.

Because of B~,u <:; S~,u we also have

THEOREM 3. Let l/r=p+ IIp+. ThenfEB~.u implies (c;m(f))Elr.u'

Remark. Using examples constructed in [23, Chap. V,2 +4 and VI,3]
we can see that the preceding results are best possible.

4.2. Integral Operators

Let K be a scalar kernel defined on the unit square. By ~(s) we denote the
function K(s, .) where s is fixed. Then ~: s -> Ms) is an abstract function. We
say that the kernel K belongs to [B~,u, B~,vl if this is true for the B~.v-valued

function ~. Kernels of type [Lp,L q], [Lp,B~,l']' and [B~,u,Lq] are defined
analogously.

In the following we investigate integral operators

1

SK: get) -> f(s) = r K(s, t) get) dt
• 0

generated by a kernel K. A first result is well-known from the theory of
absolutely p-summing operators; cf. [8].

LEMMA 4. Let lip + llq <, 1. Then

(0) KE [Lp,Lq]:::;,SKE~q,(Lq"Lq')'

Now we are in a position to establish

THEOREM 4. Let lip + Ilq <, 1. Then the following implications are
true:

(1) K E [L p , B~.v], p<,v
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(2) K E [B~.u, L q ]

(3) K E [B~.u, B~.v] =>

8 K E ~~,.u<Lq" L q,),

8 K E ~~,~:(Lq" L q,).

Proof We consider the operator T transforming every kernel K into the
corresponding integral operator 8 K' Then the Transformation Theorem, the
Commutation Theorem, and Lemma 4 yield

Applying once again the Transformation Theorem to (0) and (1), we obtain
(2) and (3), respectively.

4.3. Convolution Operators

Let f be a I-periodic scalar function defined on the real line. Then we put

KJs, t) :=f(s - t).

The well-known theorem about the continuity of the shift operator yields

LEMMA 5. Let 0 <q < 00. Then

(0) fE L q

Now we get

=>

THEOREM 5. Let 0 < q < 00. The following implications are true:

(1) fE B~.t" v:f- 00 => KfE [L OJ , B~.t'],

(2) fE B~.~a => KfE [B~.u, B~.v]'

Proof We consider the operator T transforming every scalar function f
into the corresponding convolution kernel K f . Then the Transformation
Theorem, the Commutation Theorem, and Lemma 5 yield

Applying once again the Transformation Theorem to (1) we obtain (2).

4.4. Eigenvalues of Operators

In the sequel let E be a complex Banach space. Since every operator
S E ~~.u(E, E) can be approximated by operators of finite rank, it follows
from Riesz's theory that 8 possesses a set of eigenvalues which is at most
countable. Let (An(S)) denote the sequence of these eigenvalues counted
according to their multiplicities and ordered such that 1,11(8)1> 1,12(8)1 >
... >O. If 8 has less than n eigenvalues, then we put An(8) = O. Now we

640/32/24
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state an interesting generalization of Weyl's theorem which goes back to
Carl and Konig [10].

THEOREM 6. Let 2 ~p ~ 00 and l/r =p + I/p. Then S E ~;.U<E, F)
implies (AiS» E I,.u.

Proof First we treat the case where S E ~tu(E, E). Then there exists a
representation S = r.r:~o Sk such that SkE lY2k(E, E) and (2 kp II SkIL9'z) E lu'
As shown in the theory of absolutely 2-summing operators [15, 17.3.7], we
can find factorizations Sk = XkA k with Ak E E(E, W) and Xk E E(W, E) such
that

Consider 12 as the orthogonal sum of the spaces Wwith k = 0, 1,.... Let Jk E
E(li\ 12) and Qk E E(l2' li k

) denote the canonical injections and surjections,
respectively. Then it follows from (2kp IIA k I1 2

?2) E lu and (2kp
IIXkll~) E lu that

00

A := L JkA kE ~gu(E, 12 )

k=O

and
00

X:= L XkQk E EfuZ
(/2 , E).

k=O

Since S = XA is related to T= AX, we have An(S) =An(T); cf. [15, 27.3.3].
Moreover, using ~2(l2' 12) = E¥2(/2, 12), the Reiteration Theorem, and the
Composition Theorem, we get

Hence the classical Weyl theorem yields (AiT» E I,.u with l/r = p + 1/2.
This proves the assertion for p = 2.

Now we suppose that 2 <p ~ 00 and p + I/p > 1/2. Then it follows from
the Embedding Theorem that ~~.uCE, E) S; ~~.u(E,E), where a := p + l/p 
1/2. Consequently, for S E ~;.u(E, E) we get (An(S» E I,.u with l/r = a +
1/2 =p + I/p.

Unfortunately the above method does not work for p + l/p ~ 1/2.
However, in this case we can apply Konig's interpolation procedure as
presented in [8,9].

Remark. If p = 00 and p ~ 1/2, then it is possible to choose a natural
number m such that mp> 1/2. Now we obtain from S E E:(E, E) that sm E
E::i~(E, E), and therefore (AnCS m»E I,/m.ulm with I/r = p. Hence, by the
Spectral Mappi,ng Theorem, it follows that (An(S» E I,.u'

Summarizing Theorems 4 and 6 we get some interesting results about the
distribution of eigenvalues of integral operators.
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THEOREM 7. Let l/p + l/q ~ 1. The following implications are true:

133

(1) KE [Lp,B~,lI]'p~v ~ (An(SK)) E Ir.lI with l/r=a+l/q+,

(2) K E [B~.u,Lq] ~ (An(SK)) E lr.u with l/r=p+l/q+,

(3 ) K E [B~.u, B~.,,] ~ (An(SK)) E lr.u with l/r =p +a +
l/q+.

Remark. Using another method the author [19] was able to show that
the condition lip + l/q ~ 1 can be replaced by the weaker assumptions
l/p + l/q <p + a + 1 and 1 ~p, q ~ 00.

Finally we recall that the (complex) Fourier coefficients

.1

A2m(f) := t f(s) exp(-2nims) ds,

.1

A2m +I (f):= J
o

f(s)exp(2nims)ds,

coincide with the eigenvalues of the convolution operator generated by the
kernel K f . Moreover, we have

Al (f) = ~I(f), A2m +1(f) +A2m(f) = ~2m +1(f),

A2m + I (f) - A2m(f) = i~2m(f)·

Therefore, summarizing Theorems 5 and 7 we once again get the statement
of Theorem 3.

Remark. The counterexamples constructed in the theory of
trigonometrical series show that the results stated in Theorem 7 are best
possible.
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